
Demonstration of a library prototype to build LoRa
mesh networks for the IoT

Joan Miquel Solé, Sergi Miralles Nogués, Roger Pueyo Centelles, Felix Freitag
Department of Computer Architecture. Technical University of Catalunya. Barcelona, Spain
{joan.miquel.sole, sergi.miralles}@estudiantat.upc.edu, {roger.pueyo, felix.freitag}@upc.edu

Abstract—LoRa has become popular in the Internet of Things
(IoT) domain as a Low Power, Wide Area Network (LPWAN)
radio technology providing low-power and long-range communi-
cation. In a typical IoT application, the LoRaWAN architecture
is applied, where LoRa end nodes communicate their data to
a gateway, which then over the Internet sends these data to a
cloud-based service for further processing. However, LoRa can
also be used standalone for the communication between LoRa
nodes forming a mesh network. In this demo paper we present
a library called LoRaMesher, which runs on LoRa nodes and
forms a mesh network among these nodes. By implementing a
distance vector routing protocol, LoRaMesher enables two nodes
to communicate data packets with each other while the other
nodes in the mesh network operate as routers. LoRaMesher can
open the possibility for new distributed applications hosted only
on such tiny IoT nodes.

Index Terms—LoRa, Mesh networks.

I . I N T R O D U C T I O N

LoRa is a wireless communication technology designed
for the Internet of Things (IoT). It provides long range
communication, with links of several km between devices,
low power consumption and low data rate. Its Configuration
parameters like the Spreading Factor (SF) can extend its range,
although at the expense of lower data rates [1].

LoRaWAN is the dominant architecture for IoT deployments
using LoRa [2]. In LoRaWAN LoRa-equipped sensor nodes
(i.e., end devices) transmit their data to nearby gateways. The
gateways, in turn, forward these messages to a network server
over an Internet connection. This way, data from the nodes
reach an application server, where the data can be further
processed by higher level IoT services. An example of a large,
public LoRaWAN deployment is The Things Network 1.

Researchers have made several proposals to extend the
LoRaWAN architecture by means of multi-hop, mesh and
routing protocols [3] and envisioned new application scenarios
if the communication between end nodes was available [4].
A few works show deployments in real field environments,
such as Ebi et al.’s [5], who proposed a synchronous LoRa
mesh network, and Meshtastic [6], an open-source project to
establish LoRa networks for short text messages. Neither of
both, however, uses a routing protocol to forward messages.

We have implemented a library codenamed LoRaMesher.
In this paper we demonstrate this library which implements a
routing protocol for LoRa mesh networks. The routing protocol

1https://www.thethingsnetwork.org/

is based on a distance-vector designed in [7], where each
LoRa node maintains a routing table about the network that
is periodically updated taking into account the routing packets
received from the directly connected neighbors.

The main contributions of this paper are:
• We highlight some of the implementation aspects of the

LoRaMesher library.
• We demonstrate the library with real nodes. For this we

run an experiment in which LoRa data and routing packets
are sent between the nodes in a LoRa mesh network.

I I . L I B R A RY I M P L E M E N TAT I O N

The LoRaMesher library 2 implements a distance-vector
routing protocol for exchanging messages among LoRa nodes.
For the interaction with the LoRa radio chip, we leverage
RadioLib 3, a versatile communication library which supports
the SX1276 LoRa series module available on the hardware we
use.

We use FreeRTOS 4 to implement task handlers for the
receiver, sender, packet processing, routing protocol and user
processing. We have implemented a packet queue to share
packets between tasks.

When a node in the LoRa mesh network receives a mes-
sage, the packet processing task in the LoRaMesher library
determines whether a message is a data or a routing packet.
If the data packet’s destination not the node itself and it has
to be routed to another node, a path towards the destination is
determined using the node’s routing table.

It is important that the receiver task is occupied for the
minimum time. Otherwise, if two packets arrive consecutively,
one may get lost due to the lack of a time slot for listening
to both LoRa signals. Therefore, in our implementation the
receiver task encapsulates the packet and adds it to the received
packets queue, to be processed when the microcontroller is
available to do it.

The sender task checks if there are packets inside the send
packet queue. If so, then the task sends them in a determined
interval, by default every 10 seconds.

The packet process task identifies the two types of packet:
• Routing packet: includes a header of 6 bytes (source: 2

bytes, destination (broadcast address): 2 bytes, type: 1

2https://github.com/LoRaMesher/LoRaMesher
3https://github.com/jgromes/RadioLib
4https://www.freertos.org/

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works. DOI 10.1109/ICDCS54860.2022.00139



byte, payload size: 1 byte) and the payload containing the
node’s routing table.

• Data packet: includes a header of 8 bytes added by
the LoRaMesher library to the packet (source: 2 bytes,
destination: 2 bytes, via: 2 bytes, type: 1 byte, payload
size: 1 byte) and the payload containing the application
data.

Finally, for the packets to the application, there is the user
received packets queue. When the process packet routine re-
ceives a data packet whose destination is the node’s application,
then the routine adds it to this priority queue and notifies the
application task.

I I I . E X P E R I M E N TAT I O N W I T H T H E L I B R A RY

For the experimentation we use ten TTGO T-Beam ESP32
boards as can be seen in Figure 1 and flash them with the
LoRaMesher library. These boards use the ESP32 System on
a Chip (SoC) and feature an SX1276 LoRa transceiver.

Figure 1. Ten T-Beam boards with LoRa radio used for the experimentation.

A. Experiment description

We design an experiment where the application on each of
the T-Beam nodes sends LoRa data packets every 20 seconds.
The data packets contain a numeric counter value, and they are
sent to all reachable nodes following consecutively the routing
table of the node.

In addition, routing packets are sent by the library between
neighboring nodes for building and updating the nodes’ routing
tables. The routing packets are sent every 30 seconds. A routing
packet contains a node’s routing table, which is shared with
the other nodes.

Figure 2 shows the OLED display of a T-Beam node that
is part of the experiment. On each line of the display there is
information about the protocol and the application. The first
line is the device ID. The second line is the number of packets
that have been sent. The third line is the last packet that has

Figure 2. T-Beam with a functional OLED display.

arrived, showing the device ID and the data of the packet. And
lastly, the last two lines show in a rotating manner the routing
table of the device in the format of "|Device ID (Hops) → Via
ID|".

In the experimentation we use ten devices and monitor the
library interactions within a duration of 2 minutes. Given the
above described configuration, within the experiment each node
sends 4 routing table packets and 6 data packets. This results
in a total of 100 packets sent among all the devices.

B. Experimental mesh network topology

Figure 3. Topology of the experimental LoRa mesh network. There are two
nodes, 0xC5FC and 0x63AC, that do not have a direct link and data packets
need to be routed through one of the other 8 nodes.

In order to demonstrate the library, we have created a
controlled environment, where the ten boards are placed close
to each other. However, two of the network nodes, which have
the identifiers 0xC5FC and 0x63AC, are modified so that they



cannot communicate with each other directly. This means that
if these two nodes want to transmit data packets to each other,
the packets must be routed through one of the other eight nodes.
The corresponding network topology, which is formed by the
routing tables created by the library at each node, is shown in
Figure 3.

C. Routing table packets

Figure 4. Trace of the library obtained from the development environment.
Shows the logs inside the Received and Process Task. Routing packet from
node 0x63AC.

In this section we analyze the routing packets of the library.
In order to observe the behavior, the T-Beam boards are
connected over the serial port to a PC. Through the serial
port monitor of the development environment we can see the
logs of the library. Every time a packet is detected by the board
the library write a log message containing relevant information.

Figure 4 shows the log messages of a routing packet received
from node 0x63AC. The reception task receives the packet
(line 1), encapsulates the packet and stores it into the received
packets queue (line 3). In the last line, the process packets
task decapsulates the packet and process it, identifying it as a
routing packet.

As it has been mentioned before, each node broadcast its
routing table through a routing packet which is received by the
neighboring nodes. In Figure 5 the information inside a routing
packet can be seen, containing the source, the type of packet
and the routing table, including the metrics. Furthermore, this
packet is 33 bytes long with 27 bytes corresponding to the
routing table (9 routes, 3 bytes each one). The number inside
the brackets indicates the position in memory of the routing
table.

Figure 5. Routing packet sent by the node 0x62D8 after 37 seconds, received
in the node 0xC5FC.

The topology shown in Figure 3 is fully built by the nodes’
routing tables when all the nodes have sent between 1 and 2

Figure 6. Final routing table after 42 seconds of execution in the node 0x9234.

routing packets. With an exchange of routing packets every 30
seconds it takes about one minute till the library achieves that
the routing tables of all the nodes have been built to represent
this topology.

Figure 6 shows the routing table of the node with Id
0x9234, which is one of the middle nodes of the topology.
Corresponding to the given network topology, all the entries
are within one hop.

Figure 7. Final routing table after 37 seconds of execution in the node 0xC5FC.

In Figure 7 the routing table of the node 0xC5FC can be
seen. It can be observed that all the nodes are at one hop but
one with two. This last entry is the other node with Id 0x63AC.

D. User data packets

In this section we analyze the application’s data packets
that are routed by the library. In Figure 8 we see how a 12

Figure 8. Trace of the application and library obtained from the development
environment. Shows the logs inside the Received, Process Task and User Task.
Data packet from node 0xDF34 to node 0x63AC.



bytes packet, 8 bytes of header + 4 bytes of payload, has been
received (line 1), stored into the received packets queue (line
3), identified as a data packet and for this node (line 4 and
5) and delivered to the user task application (line 6 and 7),
where it displays the numerical value (in this case 4) inside
the packet.

Figure 9. In the node 0xC5FC, sending a data packet to the node 0x9234.

There is an specified task to send the packets, which blocks
the antenna and disabled the reception of packets. Once the
user data task or the routing protocol task wants to send a
packet, it will add it into the send packets queue and then, the
send task will get this packets and, if needed, will add the next
hop, and finally send it.

In Figure 9 the first two lines show the creation of the data
packet, the third one adds the packet inside the send packets
queue, the fifth line changes the next hop, and the last lines
shows the task sending the packet.

Figure 10. The node 0x9234 forwards a message from node 0xC5FC to node
0x63AC.

In Figure 10 it can be observed how node 0x9234 receives a
data packet from node 0xC5FC, which has its Id in the packet’s
via field. When this happens the node forwards the message
to the next hop, in this case it is the destination 0x63AC.

E. Aditional analysis on operational performance

With regards to the short term operation, we analyze the
experiment described in section III-A. Specifically, we measure
the packet delivery ratio. We power on the ten devices flashed
with the library and application code in a consecutive way
with a delay of approximately 1 second. Each device starts
configuring the node and then running the application during
2 minutes. By analyzing the logs of nodes we observe an
average packet delivery ratio of around 95%. When the devices

are powered on simultaneously, we observe that the packet
delivery ratio decreases, which can be attributed to a higher
number of collisions of LoRa packets from nodes sending at
the same time.

For a long term operation we run a 12 hour experiment. This
experiment aims to confirm that the library implementation
does not produce any overflows or memory exhaustion at the
devices. Observing the logs of the nodes and the counter value
of the data packets at the end of the experiment we found that
the behavior of the library was correct.

I V. D E M O N S T R AT I O N

The demonstration of the experimentation with the LoRa-
Mesher library highlights the following aspects:

1) Application level: It is demonstrated that the LoRa-
Mesher library can be used by an application running
at the nodes. For this, the sending of data packets and
reception of these packets at the destination nodes, which
are part of the LoRa mesh network, is shown.

2) LoRaMesher library operation: It is demonstrated that
the implementation of the library sends routing packets
and that the nodes build a routing table that corresponds
to the network topology.

Future work includes conducting a detailed performance
evaluation of the LoRa mesh network enabled by the library.
Furthermore, we aim to explore the usage of the library by
real IoT applications.

A C K N O W L E D G M E N T

This work was partially supported by the Spanish Gov-
ernment under contracts PID2019-106774RB-C21, PCI2019-
111851-2 (LeadingEdge CHIST-ERA), PCI2019-111850-2
(DiPET CHIST-ERA).

R E F E R E N C E S

[1] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of LoRa:
Long range & low power networks for the internet of things,” Sensors,
vol. 16, no. 9, 2016. [Online]. Available: https://www.mdpi.com/1424-
8220/16/9/1466

[2] “LoRa alliance,” https://lora-alliance.org/, accessed: 2022-03-03.
[3] J. R. Cotrim and J. H. Kleinschmidt, “LoRaWAN mesh networks:

A review and classification of multihop communication,” Sensors,
vol. 20, no. 15, 2020. [Online]. Available: https://www.mdpi.com/1424-
8220/20/15/4273

[4] R. Pueyo Centelles, F. Freitag, R. Meseguer, and L. Navarro, “Beyond
the star of stars: An introduction to multihop and mesh for LoRa and
LoRaWAN,” IEEE Pervasive Computing, vol. 20, no. 2, pp. 63–72, 2021.

[5] C. Ebi, F. Schaltegger, A. Rüst, and F. Blumensaat, “Synchronous LoRa
mesh network to monitor processes in underground infrastructure,” IEEE
Access, vol. 7, pp. 57 663–57 677, 2019.

[6] “Meshtastic: Open source hiking, pilot, skiing and secure GPS mesh
communicator,” https://meshtastic.org/, accessed: 2022-03-03.

[7] R. Pueyo Centelles, “Towards LoRa mesh networks for the IoT,” Ph.D.
dissertation, Universitat Politècnica de Catalunya, Nov 2021.


